Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166525, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35987478

RESUMEN

Cardiac fibroblasts (CFs) undergo senescence in reaction to different stressors, leading to a poor prognosis of cardiac disease. Doxorubicin (Doxo) is an antineoplastic drug with strong cardiotoxic effects, which induces IL-1ß secretion and thus, triggers a potent pro-inflammatory response. Doxo induces CFs senescence; however, the mechanisms are not fully understood. Different pharmacological strategies have been used to eliminate senescent cells by inducing their apoptosis or modifying their secretome. However, Resolvin E1 (RvE1), a lipid derivative resolutive mediator with potent anti-inflammatory effects has not been used before to prevent CFs senescence. CFs were isolated from adult male C57BL/6J mice and subsequently stimulated with Doxo, in the presence or absence of RvE1. Senescence-associated ß-galactosidase activity (SA-ß-gal), γ-H2A.X, p53, p21, and senescence-associated secretory phenotype (SASP) were evaluated. The involvement of the NLRP3 inflammasome/interleukin-1 receptor (IL-1R) signaling pathway on CFs senescence was studied using an NLRP3 inhibitor (MCC950) and an endogenous IL-1R antagonist (IR1A). Doxo is able to trigger CFs senescence, as evidenced by an increase of γ-H2A.X, p53, p21, and SA-ß-gal, and changes in the SASP profile. These Doxo effects were prevented by RvE1. Doxo triggers IL-1ß secretion, which was dependent on NLRP3 activation. Doxo-induced CFs senescence was partially blocked by MCC950 and IR1A. In addition, IL-1ß also triggered CFs senescence, as evidenced by the increase of γ-H2A.X, p53, p21, SA-ß-gal activity, and SASP. All these effects were also prevented by RvE1 treatment. CONCLUSION: These data show the anti-senescent role of RvE1 in Doxo-induced CFs senescence, which could be mediated by reducing IL-1ß secretion.


Asunto(s)
Inflamasomas , Interleucina-1beta/metabolismo , Animales , Antiinflamatorios/farmacología , Senescencia Celular , Doxorrubicina/farmacología , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacología , Fibroblastos/metabolismo , Furanos , Indenos , Inflamasomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores de Interleucina-1/metabolismo , Sulfonamidas , Proteína p53 Supresora de Tumor/metabolismo , beta-Galactosidasa/metabolismo , beta-Galactosidasa/farmacología
2.
Biochim Biophys Acta Mol Basis Dis ; 1867(12): 166241, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34400298

RESUMEN

AIMS: Despite the broad pharmacological arsenal to treat hypertension, chronic patients may develop irreversible cardiac remodeling and fibrosis. Angiotensin II, the main peptide responsible for the Renin-Angiotensin-Aldosterone-System, has been closely linked to cardiac remodeling, hypertrophy, fibrosis, and hypertension, and some of these effects are induced by inflammatory mediators. Resolvin-D1 (RvD1) elicits potent anti-inflammatory and pro-resolving effects in various pathological models. In this study, we aimed to examine whether RvD1 ameliorates cardiac remodeling and hypertension triggered by angiotensin II. METHODS AND RESULTS: Alzet® osmotic mini-pumps filled with angiotensin II (1.5 mg/kg/day) were implanted in male C57BL/6 J mice for 7 or 14 days. RvD1 (3 µg/kg/day, i.p) was administered one day after the surgery and during the complete infusion period. Blood pressure and myocardial functional parameters were assessed by echocardiography. At the end of the experimental procedure, blood and heart tissue were harvested, and plasma and histological parameters were studied. After 7 and 14 days, RvD1 reduced the increase of neutrophil and macrophage infiltration triggered by angiotensin II, and also reduced ICAM-1 and VCAM-1 expression levels. RvD1 also reduced cytokine plasma levels (IL-1ß, TNF-α, IL-6, KC, MCP-1), cardiac hypertrophy, interstitial and perivascular fibrosis, and hypertension. CONCLUSIONS: This study unveils novel cardioprotective effects of RvD1 in angiotensin II-induced hypertension and cardiac remodeling by attenuating inflammation and provides insights into a potential clinical application.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Ácidos Docosahexaenoicos/farmacología , Hipertensión/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Angiotensina II/efectos adversos , Angiotensina II/farmacología , Animales , Cardiomegalia/sangre , Cardiomegalia/genética , Cardiomegalia/patología , Quimiocina CCL2/sangre , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hipertensión/sangre , Hipertensión/genética , Hipertensión/patología , Inflamación/sangre , Inflamación/genética , Inflamación/patología , Molécula 1 de Adhesión Intercelular/sangre , Interleucina-1beta/sangre , Interleucina-6/sangre , Ratones , Sistema Renina-Angiotensina/genética , Factor de Necrosis Tumoral alfa/sangre , Molécula 1 de Adhesión Celular Vascular/sangre , Remodelación Ventricular
3.
Front Pharmacol ; 9: 1368, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30555324

RESUMEN

Cardiac fibroblasts (CFs) contribute to theinflammatory response to tissue damage, secreting both pro- and anti-inflammatory cytokines and chemokines. Interferon beta (IFN-ß) induces the phosphorylation of signal transducer and activator of transcription (STAT) proteins through the activation of its own receptor, modulating the secretion of cytokines and chemokines which regulate inflammation. However, the role of IFN-ß and STAT proteins in modulating the inflammatory response of CF remains unknown. CF were isolated from adult male rats and subsequently stimulated with IFN-ß to evaluate the participation of STAT proteins in secreting chemokines, cytokines, cell adhesion proteins expression and in their capacity to recruit neutrophils. In addition, in CF in which the TRL4 receptor was pre-activated, the effect of INF-ß on the aforementioned responses was also evaluated. Cardiac fibroblasts stimulation with IFN-ß showed an increase in STAT1, STAT2, and STAT3 phosphorylation. IFN-ß stimulation through STAT1 activation increased proinflammatory chemokines MCP-1 and IP-10 secretion, whereas IFN-ß induced activation of STAT3 increased cytokine secretion of anti-inflammatory IL-10. Moreover, in TLR4-activated CF, IFN-ß through STAT2 and/or STAT3, produced an anti-inflammatory effect, reducing pro-IL-1ß, TNF-α, IL-6, MCP-1, and IP-10 secretion; and decreasing neutrophil recruitment by decreasing ICAM-1 and VCAM-1 expression. Altogether, our results indicate that IFN-ß exerts both pro-inflammatory and anti-inflammatory effects in non-stimulated CF, through differential activation of STAT proteins. When CF were previously treated with an inflammatory agent such as TLR-4 activation, IFN-ß effects were predominantly anti-inflammatory.

4.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 831-842, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29222072

RESUMEN

Cardiac fibroblasts (CF) act as sentinel cells responding to chemokines, cytokines and growth factors released in cardiac tissue in cardiac injury events, such as myocardial infarction (MI). Cardiac injury involves the release of various damage-associated molecular patterns (DAMPs) including heparan sulfate (HS), a constituent of the extracellular matrix (ECM), through the TLR4 receptor activation triggering a strong inflammatory response, inducing leukocytes recruitment. This latter cells are responsible of clearing cell debris and releasing cytokines that promote CF differentiation to myofibroblast (CMF), thus initiating scar formation. CF were isolated from adult male rats and subsequently stimulated with HS or LPS, in the presence or absence of chemical inhibitors, to evaluate signaling pathways involved in ICAM-1 and VCAM-1 expression. siRNA against ICAM-1 and VCAM-1 were used to evaluate participation of these adhesion molecules on leukocytes recruitment. HS through TLR4, PI3K/AKT and NF-ΚB increased ICAM-1 and VCAM-1 expression, which favored the adhesion of spleen mononuclear cells (SMC) and bone marrow granulocytes (PMN) to CF. These effects were prevented by siRNA against ICAM-1 and VCAM-1. Co-culture of CF with SMC increased α-SMA expression, skewing CF towards a pro-fibrotic phenotype, while CF pretreatment with HS partially reverted this effect. CONCLUSION: These data show the dual role of HS during the initial stages of wound healing. Initially, HS enhance the pro-inflammatory role of CF increasing cytokines secretion; and later, by increasing protein adhesion molecules allows the adhesion of SMC on CF, which trigger CF-to-CMF differentiation.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Heparitina Sulfato/farmacología , Molécula 1 de Adhesión Intercelular/metabolismo , Leucocitos/efectos de los fármacos , Miocardio/citología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Células Cultivadas , Fibroblastos/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/genética , Leucocitos/fisiología , Masculino , Miocardio/metabolismo , Miofibroblastos/efectos de los fármacos , Miofibroblastos/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Molécula 1 de Adhesión Celular Vascular/genética
5.
J Mol Cell Cardiol ; 2016 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-27983968

RESUMEN

Macrophage polarization plays an essential role in cardiac remodeling after injury, evolving from an initial accumulation of proinflammatory M1 macrophages to a greater balance of anti-inflammatory M2 macrophages. Whether cardiac fibroblasts themselves influence this process remains an intriguing question. In this work, we present evidence for a role of cardiac fibroblasts (CF) as regulators of macrophage recruitment and skewing. Adult rat CF, were treated with lipopolysaccharide (LPS) or TGF-ß1, to evaluate ICAM-1 and VCAM-1 expression using Western blot and proinflammatory/profibrotic cytokine secretion using LUMINEX. We performed in vitro migration and adhesion assays of rat spleen monocytes to layers of TGF-ß1- or LPS-pretreated CF. Finally, TGF-ß1- or LPS-pretreated CF were co-cultured with monocyte, to evaluate their effects on macrophage polarization, using flow cytometry and cytokine secretion. There was a significant increase in monocyte adhesion to LPS- or TGF-ß1-stimulated CF, associated with increased CF expression of ICAM-1 and VCAM-1. siRNA silencing of either ICAM-1 or VCAM-1 inhibited monocyte adhesion to LPS-pretreated CF; however, monocyte adhesion to TGF-ß1-treated CF was dependent on only VCAM-1 expression. Pretreatment of CF with LPS or TGF-ß1 increased monocyte migration to CF, and this effect was completely abolished with an MCP-1 antibody blockade. LPS-treated CF secreted elevated levels of TNF-α and MCP-1, and when co-cultured with monocyte, LPS-treated CF stimulated increased macrophage M1 polarization and secretion of proinflammatory cytokines (TNF-α, IL-12 and MCP-1). On the other hand, CF stimulated with TGF-ß1 produced an anti-inflammatory cytokine profile (high IL-10 and IL-5, low TNF-α). When co-cultured with monocytes, the TGF-ß1 stimulated fibroblasts skewed monocyte differentiation towards M2 macrophages accompanied by increased IL-10 and decreased IL-12 levels. Taken together, our results show for the first time that CF can recruit monocytes (via MCP-1-mediated chemotaxis and adhesion to ICAM-1/VCAM-1) and induce their differentiation to M1 or M2 macrophages (through the CF cytokine profile induced by proinflammatory or profibrotic stimuli).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...